Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans.
نویسندگان
چکیده
Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress.
منابع مشابه
Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas.
A novel mesophilic bacterium, strain GO25(T), was isolated from a nest of hydrothermal vent polychaetes, Paralvinella sp., at the Iheya North field in the Mid-Okinawa Trough. Cells were motile short rods with a single polar flagellum. Growth was observed between 4 and 35 degrees C (optimum 30 degrees C; 13-16 h doubling time) and between pH 5.4 and 8.6 (optimum pH 6.1). The isolate was a facult...
متن کاملThe Role of Hydrogen for Sulfurimonas denitrificans’ Metabolism
Sulfurimonas denitrificans was originally isolated from coastal marine sediments. It can grow with thiosulfate and nitrate or sulfide and oxygen. Recently sequencing of its genome revealed that it encodes periplasmic and cytoplasmic [NiFe]-hydrogenases but the role of hydrogen for its metabolism has remained unknown. We show the first experimental evidence that S. denitrificans can indeed expre...
متن کاملUnique and Universal Features of Epsilonproteobacterial Origins of Chromosome Replication and DnaA-DnaA Box Interactions
In bacteria, chromosome replication is initiated by the interaction of the initiator protein DnaA with a defined region of a chromosome at which DNA replication starts (oriC). While DnaA proteins share significant homology regardless of phylogeny, oriC regions exhibit more variable structures. The general architecture of oriCs is universal, i.e., they are composed of a cluster of DnaA binding s...
متن کاملNon-contiguous finished genome sequence and description of Sulfurimonas hongkongensis sp. nov., a strictly anaerobic denitrifying, hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from marine sediment
Here, we report a type strain AST-10 representing a novel species Sulfurimonas hongkongensis within Epsilonproteobacteria, which is involved in marine sedimentary sulfur oxidation and denitrification. Strain AST-10(T) (= DSM 22096(T) = JCM 18418(T)) was isolated from the coastal sediment at the Kai Tak Approach Channel connected to Victoria Harbour in Hong Kong. It grew chemolithoautotrophicall...
متن کاملStructural Stability, Transitions, and Interactions within SoxYZCD-Thiosulphate from Sulfurimonas denitrificans: An In Silico Molecular Outlook for Maintaining Environmental Sulphur Cycle
Thiosulphate oxidation (an essential mechanism) serves to maintain the global sulphur cycle. Earlier experimental and computational studies dealt with environmental thiosulphate oxidation but none dealt with thiosulphate oxidation from deep ocean belts. Wet-laboratory experimental research shows that epsilon-proteobacteria Sulfurimonas denitrificans possess sox (sulphur-oxidizing) operon and pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 74 4 شماره
صفحات -
تاریخ انتشار 2008